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Coherent sources in the 4~5-ym region are needed
for a variety of applications, including chemical
monitoring, biomedical applications, spectroscopy,
and atmospheric and environmental sensing. Al-
though pulsed emission is readily obtained at these
wavelengths, high-power cw sources for solid-state
laser devices are essentially nonexistent. Quantum-
cascade lasers have yielded powers of up to 150 mW
in this wavelength range.!” These lasers, however,
require liquid-nitrogen temperatures for achievement
of this level of performance. Recent improvements
in the fabrication of periodically poled LiNbO;
(PPLN; Ref. 3) have made possible the development of
high-power c¢w optical parametric oscillators (OPQO’s)
for the conversion of 1-um laser emission to wave-
lengths of up to 4 um.*"" OQutput at wavelengths
further into the IR, however, is difficult to obtain
because of optical absorption by the LiNbOj;, which
results in a high threshold.®® The cw PPLN OPO
threshold and related thermal issues are discussed
in Ref. 10. To date, only very low power has been
achieved at wavelengths just slightly longer than
4 pum for cw operation in a PPLN OPO.* To avoid
the high-threshold problem, we have used a two-step
nonlinear conversion process within the same PPLN
crystal to obtain mid-IR output. In the first step a
1-um Nd:YAG laser pumps a singly resonant OPO
ring cavity to generate signal and idler wavelengths
at 1.7 um (resonant) and 2.8 um, respectively. In
the second step the resonant 1.7-ym and nonresonant
2.8-pm waves mix to generate light at 4.3 um. Since
this mixing, or difference frequency generation (DFQ),
is distinct from the optical parametric oscillation
process, the strong optical absorption beyond 4 um
does not affect the threshold of the overall device.
Furthermore, since both processes occur in the same
crystal, there are no additional alignment issues
beyond those of a standard OPO resonator.

A schematic of our setup is shown in Fig. 1. The
four-mirror ring cavity was similar to that used in pre-
viously reported OPO work at 2.9 um.” The mirrors
in this effort were coated for high transmission at 1.06,

2.8, and 4.5 pum and high reflection at 1.7 um. The
two flat mirrors were separated by 6.5 cm, and the two
concave mirrors (10-cm radius of curvature) were sepa-
rated by 14.5 cm. The total cavity length was ~45 cm
and formed a mode-waist diameter of ~70 xum within
the crystal. The 5-cm-long PPLN crystal, fabricated
by Crystal Technology, had three different grating pe-
riods, 30.34, 30.5, and 30.66 wxm for testing. The crys-
tal was temperature tuned in an oven that could reach
a maximum of 230 °C. The PPLN was pumped by a
commercial cw Nd:YAG laser from Lightwave Electron-
ics, which lased on ~10 longitudinal modes at 1.06 xm.
The signal and idler wavelengths were measured with
a Burleigh WA-1000-IR wavemeter. The DFG output
was measured with a pyroelectric power meter..

In general, for a single temperature, two different
consecutive PPLN gratings would be required for
phase matching of the optical parametric oscilla-
tion and DFG processes. However, our calculations
predicted that there are conditions under which a
single grating can be used to perform both non-
linear processes at a specific temperature. Using the
often-cited LiNbO3 Sellmeier equation from Edwards
and Lawrence'! and a more recent equation from
Jundt,’ we calculated the PPLN DFG grating period
that was required for phase matching of the signal and
the idler generated from a specific PPLN OPO grating
period as a function of temperature. As shown in

1.7 um SRO Ring Cavity
OPO (IstStep):  1.06 pm —> 17um + 28um
DFG (20d Step): 1. 7pm-2.8um —» 43 pm

Fig. 1. Optical layout for the PPLN OPO-DFG experi-
ment. SRO, singly resonant optical. See text for other
definitions.




Fig. 2, which was calculated for signal and idler
wavelengths derived from a 30.34-um OPO grating
period, the DFG and optical parametric oscillation
grating periods are equal at one specific temperature,
which is dependent on the Sellmeier expression used.
For the Sellmeier expression of Ref. 11, simultaneous
phase matching by use of a grating period of 30.34 um
occurs at 212°C. This phase matching yields a DFG
output at 4.578 um, an OPO signal at 1.727 um, and
an idler at 2.773 um. For the Sellmeier expression of
Ref. 12, the analysis yields 4.331-pm DFG output at
202 °C, with OPO wavelengths at 1.709 and 2.823 um.
The results for similar calculations with the other two
PPLN grating periods, 30.5 and 30.66 pm, are listed
in Table 1.

DFG Output Wavelength
4.2 pm 4.3pm 4.4pm 43um  46um
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Fig. 2. Required DFG grating period for phase matching
of the signal and the idler from a 30.34-um PPLN OPO
as a function of crystal temperature. The solid curve was
calculated from the Sellmeier equation in Ref. 11, and the
dashed curve was derived with the Eq. from Ref. 12. The
dotted line denotes the actual grating period of the crystal.
The solid oval shows the temperature at which simultane-
ous optical parametric oscillation and DFG phase matching
was achieved.

Tests were carried out with all three PPLN grat-
ings. The DFG signal was monitored as the crystal
temperature was varied around the predicted tem-
peratures. Measurable DFG output power is very
sensitive to temperature variation because of the
stringent phase-matching condition. The experimen-
tal results, listed in Table 1 for comparison with the
theoretical predictions, are in closer agreement with
the calculations derived from the Sellmeier equation
of Ref. 12. Our data thus indicate that the Sellmeier
equation from Ref. 12 is more accurate for calculating
the refractive index of LiNbO; in the 4-5-um wave-
length region.

The performance of the optical parametric oscil-
lator—difference frequency generator (OPO-DFG)
resonator (Fig. 1) with the PPLN crystal with the
30.5 um grating is shown in Fig. 3. At the maximum
1.06-xm pump power of 14.2 W (measured at the input
mirror), we obtained 150 mW of cw output at 4.3 um
(measured through a 90%-transmissive long-pass IR
filter). To our knowledge, this is the highest cw
output power in the 4-5-pm region ever reported for
a solid-state laser device.

Because the 1-um Nd:YAG laser has a spectral
bandwidth of 0.02 nm (5 GHz) and the resonant
signal at 1.7 um in the OPO ring cavity is a single
frequency, the spectral bandwidth at 2.8 pm should
be ~0.13 nm, and the bandwidth at 4.3 pm should be
~0.31 nm. Using the Sellmeier expression of Ref. 12,
we calculated the OPO spectral and temperature
acceptance bandwidths near 1.7 ym to be 4.2 nm
and 38.1°C, respectively. Similar calculations for
the DFG process yielded spectral and temperature
acceptance bandwidths near 1.7 pm of 0.36 nm and
5.5°C, respectively. This 0.36-nm bandwidth leads
to a tunable bandwidth of 4.6 nm near 4.3 um for our
OPO-DFG device.

Since the optical parametric oscillation and DFG
processes occur in the same PPLN crystal and are not
independent, the resulting tunability of the OPO-DFG

Table 1. Comparison of the Experimental Data and Predictions (Temperatures
and Wavelengths) for Simultaneous Phase-Matched
Optical Parametric Oscillation and DFG at Three Different PPLN Grating Periods

Wavelength (um)

Grating Period (xm) T(C) OPO Signal OPO Idler DFG
30.34 )
Ref. 11 (Calc.) 212 1.727 2.773 4578
Ref. 12 (Calc.) 202 1.709 2.823 4.331
Measured 199° 1.707¢ 2.829°¢ 4.304%
30.5 .
Ref. 11 (Calc.) 182 1.725 2.778 4.551
Ref. 12 (Calc.) 171 1.707 2.827 4.309
Measured 169° 1.705° 2.8332 4.2820
30.66
Ref. 11 (Calc.) 148 1.720 2.791 4.482
Ref. 12 (Calc.)- 138 1.706 2.831 4.293
Measured 137 1.703° 2.8372 4.261%

“Directly measured data.

bCalculated from measured OPO signal and idler wavelengths.
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Fig. 3. DFG output power versus Nd:YAG pump power for
a single-period (80.5-xm) PPLN crystal.
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device is significantly less than the independent
bandwidth parameters would suggest. We observed
the temperature bandwidth of our device to be less
than 1°C. The wavelength tunability of our device
by temperature is less than 2 nm, which is beyond the
resolution of our current diagnostics.

We have demonstrated 150 mW of cw 4.3-um out-
put, using DFG in a singly resonant PPLN OPO. Our
two-step wavelength-conversion approach provides a
simple way to extend the useful wavelength range of
PPLN into the region in which optical absorption be-
comes problematic. A low threshold and simple de-
sign are key features of this approach. Clearly our
device does not provide significant wavelength tunabil-
ity, owing to the unique phase-matching conditions.
Wider tunability, however, can be achieved by use of
two separate temperature-controlled PPLN crystals for
the optical parametric oscillation and DFG processes.
However, the alignment of such a device is more diffi-
cult than for the single PPLN device described above.
We are currently pursuing the two-crystal approach
and will discuss our results at a later date. Addition-
ally, our data identify the most accurate LiNbO; Sell-

meier equation in the 4.3—-4.5-um region, which will
enable us to design new PPLN crystals for other IR
wavelengths and tunable operation.
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